
Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

vLLM Office Hours #13 - November 7, 2024
Guest Topic: SOTA Tool-Calling Implementation in vLLM

Founder of Constellate AI

Michael Goin
Engineering Lead at Neural Magic
vLLM Committer

Kyle Mistele

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

A Few Housekeeping Items Before We Start

Ask questions using Zoom Chat
● Let’s test it out – Open the chat and tell us where

you are in the world.

This session is recorded
● Find it on our “vLLM Office Hours” page,

YouTube, and X.

● Ask follow-up questions in vLLM Discord and
Developer Slack.

Let’s make this an interactive session
● Turn your camera on 🙏
● Have something to say? Just start talking!

https://neuralmagicdev.wpengine.com/community-office-hours/
https://www.youtube.com/channel/UCo8dO_WMGYbWCRnj_Dxr4EA
https://twitter.com/neuralmagic
https://discord.gg/jz7wjKhh6g
https://slack.vllm.ai/

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved© 2024 Neural Magic All Rights Reserved

View Past Recordings and Register for Future vLLM Office Hours Here.

vLLM Project Update
● vLLM v0.6.3.post1

● Model support: Ministral, VLM2Vec

● Optimizations for ngram spec decode

Upcoming Office Office Hours Sessions
● [NOV 14] The Impact of Disaggregated Prefill and

KV Cache Storage in vLLM (Kuntai Du, vLLM

Committer and Ph.D. Student at the University of

Chicago)

● [DEC 5] Deep Dive into Machete, a Mixed-Input

GEMM Kernel Optimized for NVIDIA Hopper

GPUs (Lucas Wilkinson, Principal Engineer HPC at

Neural Magic)

● [DEC 19] vLLM Project Update: 2024

Retrospective and 2025 Roadmap (Michael Goin,

vLLM Committer and Engineering Lead at Neural

Magic)

What’s New [in the Past Two Weeks]

Today’s Guest Topic
● POSTPONED SOTA Tool-Calling Implementation in

vLLM (Kyle Mistele, Head of Product and Engineering

at Zelus Labs)

https://neuralmagic.com/community-office-hours/
https://github.com/vllm-project/vllm/releases/tag/v0.6.3.post1

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved© 2024 Neural Magic All Rights Reserved

About vLLM
The de-facto standard in open source model serving

Fast and easy to use open source inference server

Support for all key model families, SOTA inference
acceleration research, and diverse hardware backends like
NVIDIA GPUs, AMD GPUs, Google TPUs, AWS Neuron,
Intel Gaudi, and x86 CPUs.

Full coverage of inference optimizations:
● Quantization: GPTQ, AWQ, INT8, FP8, KV Cache
● Chunked Prefill, Automatic Prefix Caching, Multi LoRA
● Tensor Parallelism, Pipeline Parallelism

Llama Granite MistralDeepSeekQwenGemma

GPU Instinct Gaudi TPU Neuron

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved© 2024 Neural Magic All Rights Reserved

About Neural Magic
Neural Magic’s is a top open-source contributor and produces enterprise-ready distributions of vLLM

nm-vllm

Supported, stable distribution of vLLM

Model optimization flows and best practices

Registry of pre-optimized models

Production telemetry and reference architectures

We bring the software, people, and processes to make your vLLM deployment successful.

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

What's New in vLLM v0.6.3.post1

New Models
● Support Ministral 3B and Ministral 8B via interleaved attention

(#9414)
● Support multiple and interleaved images for Llama3.2 (#9095)
● Support VLM2Vec, the first multimodal embedding model in vLLM

(#9303)

Important bug fix
● Fix chat API continuous usage stats (#9357)
● Fix vLLM UsageInfo and logprobs None AssertionError with empty

token_ids (#9034)
● Fix Molmo text-only input bug (#9397)
● Fix CUDA 11.8 Build (#9386)
● Fix _version.py not found issue (#9375)

Other Enhancements
● Remove block manager v1 and make block manager v2 default

(#8704)
● Spec Decode Optimize ngram lookup performance (#9333)

~2x improvement!

https://github.com/vllm-project/vllm/pull/9414
https://github.com/vllm-project/vllm/pull/9095
https://github.com/vllm-project/vllm/pull/9303
https://github.com/vllm-project/vllm/pull/9357
https://github.com/vllm-project/vllm/pull/9034
https://github.com/vllm-project/vllm/pull/9397
https://github.com/vllm-project/vllm/pull/9386
https://github.com/vllm-project/vllm/pull/9375
https://github.com/vllm-project/vllm/pull/8704
https://github.com/vllm-project/vllm/pull/9333

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved© 2024 Neural Magic All Rights Reserved

Blogs Worth Checking Out

Introducing Machete, a

Mixed-Input GEMM

Kernel Optimized for

NVIDIA Hopper GPUs

We Ran Over Half a

Million Evaluations on

Quantized LLMs: Here's

What We Found

How Speculative Decoding

Boosts vLLM Performance

by up to 2.8x

https://neuralmagic.com/blog/introducing-machete-a-mixed-input-gemm-kernel-optimized-for-nvidia-hopper-gpus/
https://neuralmagic.com/blog/introducing-machete-a-mixed-input-gemm-kernel-optimized-for-nvidia-hopper-gpus/
https://neuralmagic.com/blog/introducing-machete-a-mixed-input-gemm-kernel-optimized-for-nvidia-hopper-gpus/
https://neuralmagic.com/blog/introducing-machete-a-mixed-input-gemm-kernel-optimized-for-nvidia-hopper-gpus/
https://neuralmagic.com/blog/we-ran-over-half-a-million-evaluations-on-quantized-llms-heres-what-we-found/
https://neuralmagic.com/blog/we-ran-over-half-a-million-evaluations-on-quantized-llms-heres-what-we-found/
https://neuralmagic.com/blog/we-ran-over-half-a-million-evaluations-on-quantized-llms-heres-what-we-found/
https://neuralmagic.com/blog/we-ran-over-half-a-million-evaluations-on-quantized-llms-heres-what-we-found/
https://blog.vllm.ai/2024/10/17/spec-decode.html
https://blog.vllm.ai/2024/10/17/spec-decode.html
https://blog.vllm.ai/2024/10/17/spec-decode.html

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

SOTA Tool-Calling Implementation in vLLM

Kyle Mistele
Founder of Constellate AI

vLLM Office Hours - November 7, 2024

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

SOTA Tool-Calling in vLLM: A Brief Outline

Today we’ll cover:

● What are tools & functions?

● Why tools matter for open-source AI

● How do models implement tools?

● How I implemented OpenAI-style tools in
vLLM + challenges faced
○ Compatibility
○ Standardization
○ Streaming

● Putting it all together with vLLM

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

OpenAI-Style Tools & Functions

Functions

● Function API Introduced by OpenAI

● Allows developers to provide functions the
AI model can “call”

● AI generates a JSON object indicating the
function it wants to call + arguments

● Provide the result to the model; it can create
a chat response or call more functions

● Important because it allows AI to interact
with external systems in a
developer-defined manner!

Tools

● A later abstraction introduced by OpenAI

● Supplements user-provided functions, with
additional OpenAI provided “tools”

● Intended for abstraction → extensibility

● e.g. Code interpreter, web search

● Most models ONLY adopt functions
(e.g. Mistral, Hermes, Qwen)

● Other models allow user-defined functions
AND support built-in tools (Llama 3.1)

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Why do tools matter?

Tools let you give LLMs new capabilities!

● Web search

● API integrations (get_current_weather)

● save & load “memories” for very long
conversations or other use-cases

● Vector, full-text, or SQL search (RAG)

● Code interpreter: write & execute code!

● Robotics applications…

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Agents!

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Why do tools matter?

Why do we want OpenAI-compatible tools
in vLLM?

● Build agentic applications with the
toolchain you’re already using!
(vLLM + OpenAI-compatible SDKs etc.)

● Enable tool streaming
○ user-facing applications
○ better UI/UX

● Increase OpenAI compatibility

● Become THE framework for building
agents & applications on open-source
LLMs

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

How do we implement tool calling?

1. Tool-Compatible chat templates

2. Identify ideal configuration
(temperatures, tokenizers, etc.)

3. OpenAI-compatible API
implementation:

a. non-streaming tool
extraction (easy)

b. streaming tool extraction
(very, very hard)

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Challenges

● Lack of standardization. Different models
have their own standard for how they indicate
tools calls in their output; different chat
templates

● Varying quality. Some models are just better
than others with respect to tool calling

● “Gotchas”. model-specific quirks; custom
prompting, etc.

● Streaming. How do we translate the model’s
generated tokens into OpenAI’s streaming
format on the fly?

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

JSON

Open Model Tool
Call Formats
(Easy)

[TOOL_CALLS]{"name": "get_weather", "arguments": { "location": "San Francisco"
}}]

Mistral AI Function Calling Format

<tool_call>
{"name": "get_weather", "arguments": { "location": "San Francisco" }}
</tool_call>

JSONNous Research's Hermes Format (& Qwen 2.5)

vLLM Open Office Hours - November 7, 2024

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Tool Extraction & Parsing: Non-Streaming

Architectural Solution for Tool Extraction:
1. Create a tool parser module for each

supported model, with separate methods to
handle streaming extraction, and to handle
non-streaming extraction

Non-Streaming Tool Extraction
1. Defines a regex to check for & extract tool

call portion of response, if present
2. Parse extracted call to find name,

arguments
3. Convert into OpenAI-compatible tool call
4. Return an OpenAI-compatible chat

completion to the client

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

<tool_call>
{"name": "get_weather", "arguments": { "location": "San Francisco" }}
</tool_call>

JSONNous Research's Hermes Format (& Qwen 2.5)

Tool Extraction
& Parsing:

Non-Streaming Example

{
"role": "assistant",
"content": null,
"tool_calls": [

{
"id": "call_abc123def456" ,
"type": "function",
"function": {

"name": "get_weather",
"arguments": "{\"location\":\"San Francisco\"}"

}
}

]
}

JSONChat Completion Response

vLLM Open Office Hours - November 7, 2024

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Tool Extraction
& Parsing:

Streaming Example

vLLM Open Office Hours - November 7, 2024

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Tool Extraction
& Parsing:

(Simplified)

vLLM Open Office Hours - November 7, 2024

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Tool Extraction & Parsing: Streaming

How do we support tools + streaming?
On the fly, we have to:

1. Detect when a tool call is being
generated by the model

2. Use partial JSON parsing to extract the
tool name as soon as the name is
finished, and stream that to the client

3. As the arguments are being generated,
use partial JSON parsing to extract diffs
and stream them to client.

It’s stateful and recursive

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Partial JSON
Parsing Examples

1 of 2

vLLM Open Office Hours - November 7, 2024

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Partial JSON
Parsing Examples

2 of 2

vLLM Open Office Hours - November 7, 2024

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Streaming Function Call Extraction Example

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Diffing From the Start of the string

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

So what do we do about the ‘\“}}’ ?

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Diffing From the End of the string

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

It gets worse.

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Additional Tool Streaming Problems

But wait, there’s more!

● How do you handle sequential tool calls?

● State management?

● How do you handle fault tolerance?
○ Open-source models, especially small

ones, are error-prone!

● Error handling and recovery?

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Best Practices for Tool Calling in vLLM

1. Create a custom chat template - models can
often be instructed to handle parallel tool
calls better; to avoid hallucinating tools; etc.

2. Careful with quantization! You lose
precision. FP8 is ok, INT8 maybe (depends
on quality/type - pref. AWQ). INT4 quants
may not call tools reliably depending on size

3. Double, triple, quadruple check the chat
template if you have issues, even if you’re
using the official one! Even official ones
often have bugs!!!

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

The Future of Open-Source Function Calling

What can we look forward to with function-calling
in the future?

● Easier to fine-tune function-calling models as
datasets proliferate (Axolotl!)

● Function call formats - right now it’s the wild
west (chat templates, anyone?)

● Expect to see function calling formats converge
into a couple of standards (with exceptions!)

● Better function-calling on open-source SLMs

● Better toolchain support

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

vLLM’s Role in the Future of Function Calling

How does vLLM fit in?

● First open-source inference/serving framework to
support tool streaming!

● Tool architecture allows for extensibility; like chat
templates it’s easy to bring your own tool parser

● Day-0 support for new LLMs

● Officially recommended by multiple AI labs; many
are starting to provide recommended vLLM
configurations (Qwen, Mistral, etc)

● vLLM is becoming the standard inference
platform for building open-source agentic
applications

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Models with vLLM Tool Parsers

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Tool Calling FAQs

What if my model isn’t supported?

● Create a PR and add a tool parser 😁
● Open an issue and ask for help!

We launched with 2 parsers - now there are 5
parsers and 6 supported model families, with
more on the way!

● You can bring-your-own parser without
creating a PR.

● If you don’t need streaming, it’s just a regex
and some parsing - 10 LOC tops :)

● Documented at https://docs.vllm.ai - search
“tool parser”

https://docs.vllm.ai

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Let’s Have a Discussion!

Questions…

Feedback…

Feature requests…

How are you using vLLM?

How can we make office hours better?

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

Get Involved With the Community

Contribute to key vLLM features Give Us Feedback

Last in-person vLLM meetup of 2024!
- Nov. 13 at the Snowflake HQ

Let’s grab a coffee! We’ll be at:
- NeurIPS, Vancouver (Dec 9 -

Dec 15)

Which events are you attending?

Meet Us at Upcoming Events Join Neural Magic’s Mission
Neural Magic wants to bring
open-source LLMs and vLLM to every
enterprise on the planet.

We are looking for vLLM Engineers to
help us accomplish our mission.

https://neuralmagic.com/careers

We’ll email you today’s recording as
soon as it’s ready.
Respond and tell us what we are
doing right and what we can do better
with vLLM office hours.
Or comment on this slide!

● Comment and review PRs that
are interesting to you

● Join the discussion on RFCs

● Check out “good first issue” tags

● Build examples and demos with
other tools

https://neuralmagic.com/careers
https://github.com/vllm-project/vllm/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22

Proprietary & Confidential Information © 2024 Neural Magic All Rights Reserved

THANK YOU!

Founder of Constellate AI
Michael Goin
Engineering Lead at Neural Magic
vLLM Committer

Kyle Mistele

